For the following slides:

enter the appropriate notes/equations on the
handout given today in class for ch. 14 probability
(see link on website to print note sheet)

Notes: 14.2 Probability

independent events: events that do not affect each other (rolling dice)
dependent events: events that do affect each other (choosing cards from a deck without replacement)

Already included on note sheet...just read the definitions

Standard deck of playing cards:

- 52 cards $\rightarrow 4$ suits
(spades, hearts, clubs, diamonds)
- Each suit has 13 cards
-Face cards: Jack,
Queen, King

- Aces are low unless stated otherwise (Ace =1) Already on note sheet for reference

Probability: $\frac{\# \text { of desired outcomes }}{\text { total \# of outcomes }}$
Sample space: set of all outcomes
$\mathrm{P}(\mathrm{A})=$ probability of event A
$\mathrm{P}\left(\mathrm{A}^{\prime}\right)=$ probability of event A $\underline{\text { not }}$ happening
$\mathrm{P}(\mathrm{A})$ and $\mathrm{P}\left(\mathrm{A}^{\prime}\right)$ are called complements $\rightarrow \mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\prime}\right)=1$
$P(A$ and $B)=P(A) \cdot P(B)$ $P(A \cap B) \rightarrow$ the "intersection" of A and B

Venn Diagram:

 overlapping (intersecting) area of the two circles represents the overall probability.Mutually exclusive events cannot happen at the same time.
$P(A$ or $B)=P(A)+P(B)$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \rightarrow$ the "union" of $A \& B$

Venn Diagram:

 the overall probability is the sum of the area of the two circles.If events are NOT mutually exclusive, then some objects can satisfy (include) the conditions of both events.
$P(A$ or $B)=P(A)+P(B)-P($ both $)$ sum of the areas overlap

Conditional Probability reduces the sample space since an event has already occurred.
$P(A \mid B)=$ the probability of "event A "

> given "event B."

Due tomorrow:

$$
\begin{gathered}
14.2 \text { \#7-13odd, } \\
15-18, \\
21-39 \text { odd }
\end{gathered}
$$

Set up problem using proper notation, then find the probability. Show work when possible!!

Note: \#7,9,11,13,18 \rightarrow just a single item is being chosen, therefore no work is required (write proper notation \& answer)

Hint for \#15,16,17: use $\mathbf{C (n , r)}$ to find all possible arrangements when choosing multiple items. Show work!

7-20 ■ Probability by Counting These exercises involve finding probabilities by counting.
7. An experiment consists of tossing a coin twice.
(a) Find the sample space HH HT TH TT
(b) Find the probability of getting heads exactly two times.

$$
P(2 H)=\frac{1}{4}
$$

(c) Find the probability of getting heads at least one time.

$$
P(\text { at least } 1 H) \text { or } P(H \geq 1)=\frac{3}{4}
$$

(d) Find the probability of getting heads exactly one time.

$$
P(1 H)=\frac{2}{4} \text { or }\left(\frac{1}{2}\right)
$$

15. A poker hand, consisting of five cards, is dealt from a standard deck of 52 cards. Find the probability that the hand contains the cards described.
(a) Five hearts

$$
\frac{{ }_{13} C_{5}}{{ }_{52} C_{5}}=\frac{1287}{2,598,960} \approx .000495
$$

(b) Five cards of the same suit
(c) Five face cards
(d) An ace, king, queen, jack, and a ten, all of the same suit (royal flush)

CHECK EVEN ANSWERS:

$$
\text { 16. a) } \begin{aligned}
\frac{C(4,3)}{C(12,3)} & =\frac{4}{220} & \text { b) } \frac{C(8,3)}{C(12,3)} & =\frac{56}{220} \\
& =\frac{1}{55} & & =\frac{14}{55} \\
& \approx 0.018 \text { or } 1.8 \% & & \approx 0.255 \text { or } 25.5 \%
\end{aligned}
$$

$$
\begin{array}{|lll|}
\hline \text { 18. a) } \frac{3}{16} & \text { b) } \frac{3}{8} & \text { c) } \frac{5}{8} \\
\hline
\end{array}
$$

